

 Navigation

 	
 index

 	
 next |

 	opc-diag 1.0.0 documentation

opc-diag

Release v1.0.0 (Installation)

opc-diag is a command-line application for exploring Microsoft Word, Excel,
and PowerPoint files from Office 2007 and later. Also known as Office Open
XML, the structure of these files adheres to the Open Packaging Convention
(OPC), specified by ISO/IEC 29500.

opc-diag provides the opc command, which allows OPC files to be browsed,
diff-ed, extracted, repackaged, and parts from one to be substituted into
another.

Its primary use is by developers of software that generates and/or
manipulates Microsoft Office documents.

A typical use would be diff-ing a Word file from before and after an operation,
say inserting a paragraph, to identify the specific changes Word made to the
XML. This is handy when one is developing software to do the same without
Word’s help:

$ opc diff before.docx after.docx

Another main use is to diagnose an issue causing an Office document to not load
cleanly, typically because the software that generated it has a bug. These
problems can be tedious and often difficult to diagnose without tools like
opc-diag, and were the primary motivation for developing it.

More information is available in the opc-diag documentation [https://opc-diag.readthedocs.org/en/latest/].

User Guide

	Installation
	Installing with pip

	Getting the Code

	Quickstart
	Use Case 1: diff two versions of an Office document

	Use Case 2: browse a part in an Office Document

	Use Case 3: diff a part between two Office Documents

	Use Case 4: extract a package to a directory

	Use Case 5: repackage a package directory into a file

	Use Case 6: substitute a part from one package into another

Everything Else

	Support

	History

 Copyright 2013, Steve Canny.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	opc-diag 1.0.0 documentation

Installation

Installing with pip

For many users, installation is as simple as executing the following from the
command line:

$ pip install opc-diag

There are, however, some common difficulties:

opc-diag depends on the lxml Python package, which cannot reliably be
installed by pip or easy_install on Windows. Building it from source
requires a compiler and other items the typical Windows user will not have
installed. Therefore we recommend Windows users manually install lxml using
a GUI installer before installing opc-diag. For that, the precompiled binaries at
http://www.lfd.uci.edu/~gohlke/pythonlibs/ have been the best source so far.

lxml depends on the libxslt and libxml2 libraries. If those are not
present the lxml build will fail during the install. Linux users shouldn’t
have too much trouble as these libraries are commonly installed by default. If
not, yum or apt-get is your friend for getting them installed. OS
X users running recent versions may also find these already installed. If not,
they can be installed using Homebrew.

Getting the Code

opc-diag is developed on GitHub, where the code is
freely available [https://github.com/python-openxml/opc-diag].

You can clone the repository like this:

git clone git://github.com/python-openxml/opc-diag.git

 Copyright 2013, Steve Canny.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	opc-diag 1.0.0 documentation

Quickstart

Use Case 1: diff two versions of an Office document

In order to determine what changes a particular operation makes to the
underlying XML in a document, an OpenXML developer can use opc-diag to ‘diff’
a before and after version.

The command:

$ opc diff before.docx after.docx

might present output like this when a new paragraph is added to a Word file:

--- before/word/document.xml

+++ after/word/document.xml

@@ -20,11 +20,16 @@

 mc:Ignorable="w14 wp14"
 >
 <w:body>
- <w:p w:rsidR="0015074B" w:rsidRDefault="0015074B">
+ <w:p w:rsidR="0015074B" w:rsidRDefault="006E20C4">
+ <w:r>
+ <w:t>New paragraph</w:t>
+ </w:r>
+ </w:p>
+ <w:p w:rsidR="006E20C4" w:rsidRDefault="006E20C4">
 <w:bookmarkStart w:id="0" w:name="_GoBack"/>
 <w:bookmarkEnd w:id="0"/>
 </w:p>
- <w:sectPr w:rsidR="0015074B" w:rsidSect="00034616">
+ <w:sectPr w:rsidR="006E20C4" w:rsidSect="00034616">
 <w:pgSz w:w="12240" w:h="15840"/>
 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800" w:header="720" w:footer="720" w:gutter="0"/>
 <w:cols w:space="720"/>

From this we can see that Word inserted a new <w:p> (paragraph) element
containing a <w:r> (run) element which itself contains a <w:t> (text)
element which in turn contains the added text. In addition, it updated the
w:rsidRDefault attribute of the paragraph and other rsid-related attributes
on the <w:sectPr> (section) element. The rsid-prefixed attributes are part
of the mechanism Word uses to track revisions.

This capability comes in handy when you want to figure out how a document
feature is implemented in OpenXML so you can write code to make the same sort
of changes. It can also be handy for isolating a change your code made that’s
causing a document to no longer load cleanly.

Use Case 2: browse a part in an Office Document

In order to closely examine the XML of an Office document part, perhaps to
confirm the XML is being generated correctly or to get a general overview of
the XML for a particular part, an OpenXML developer can use opc-diag to browse
a part contained in an OPC document.

In OPC terminology, a document file, e.g. example.docx, is known as
a package. In common-sense terms, a package is a zip archive containing
a number of files arranged in a specific directory hierarchy. If you unzip the
file, that’s exactly what you’ll get. An individual “file” in a package is
known as a package item, some of which are known as a part. It’s not
uncommon to simply refer to any of them as a part or package part.

The command:

$ opc browse example.docx core.xml

presents output that looks something like this:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<cp:coreProperties
 xmlns:cp="http://schemas.openxmlformats.org/package/2006/metadata/core-properties"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcmitype="http://purl.org/dc/dcmitype/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 >
 <dc:title/>
 <dc:subject/>
 <dc:creator>Steve Canny</dc:creator>
 <cp:keywords/>
 <dc:description/>
 <cp:lastModifiedBy>Steve Canny</cp:lastModifiedBy>
 <cp:revision>1</cp:revision>
 <dcterms:created xsi:type="dcterms:W3CDTF">2013-09-21T23:52:00Z</dcterms:created>
 <dcterms:modified xsi:type="dcterms:W3CDTF">2013-09-21T23:53:00Z</dcterms:modified>
</cp:coreProperties>

core.xml is a part that all OpenXML files produced by an Office application
will contain. It’s relatively short, which is why I chose it for this example.

You can see that opc-diag has taken care of extracting it from the .docx file
and formatting the XML for readability, including indenting each of the
namespace declarations onto a line of its own. It also doesn’t leave extracted
zip directories hanging around on the filesystem. These are some of the basic
capabilities that reduce the tedium in exploring OpenXML files.

Use Case 3: diff a part between two Office Documents

Once you’ve narrowed down the relevant differences between two documents to
a specific part, the diff-item subcommand allows you to limit the diff to
a particular part that appears in both packages.

Extending the prior two examples, say we wanted to focus our attention on the
differences between the /docProps/core.xml part in two documents.

The command:

$ opc diff-item before.docx after.docx core.xml

presents output that looks something like this:

--- before/docProps/core.xml

+++ after/docProps/core.xml

@@ -12,7 +12,7 @@

 <cp:keywords/>
 <dc:description/>
 <cp:lastModifiedBy>Steve Canny</cp:lastModifiedBy>
- <cp:revision>1</cp:revision>
- <dcterms:created xsi:type="dcterms:W3CDTF">2013-09-21T23:52:00Z</dcterms:created>
- <dcterms:modified xsi:type="dcterms:W3CDTF">2013-09-21T23:52:00Z</dcterms:modified>
+ <cp:revision>2</cp:revision>
+ <dcterms:created xsi:type="dcterms:W3CDTF">2013-09-21T23:53:00Z</dcterms:created>
+ <dcterms:modified xsi:type="dcterms:W3CDTF">2013-09-21T23:53:00Z</dcterms:modified>
 </cp:coreProperties>

You can see that Word incremented the <cp:revision> element and updated the
<dcterms:created> and <dcterms:modified> elements.

Use Case 4: extract a package to a directory

There are a number of situations in which it’s useful to break a package file
into its parts and perhaps to put it back together again later. The extract
subcommand provides the first half of this process, complemented by the
repackage subcommand discussed next.

The command:

$ opc extract example.xlsx example_dir

will extract all the package items in example.xlsx into the directory
example_dir. The hierarchy of the package item names forms the structure of
subdirectories that are created in example_dir. For example, the main
workbook will be found at example_dir/xl/workbook.xml and the thumbnail
image that may appear in a desktop icon for the file is found at
example_dir/docProps/thumbnail.jpeg.

Users on a *nix operating system can accomplish much the same thing with the
command:

$ unzip example.xlsx -d example_dir

but I thought it might be handy from time to time to have it built into opc-diag.

Use Case 5: repackage a package directory into a file

As a complement to the extract subcommand, repackage allows a directory
containing a set of package files to be reassembled into a single file.

This enables some useful workflows, one of which is using the directory as
a sort of “source code” tree for a document which can be “compiled” into
a (hopefully) working Office document. A typical use would be to try out some
proposed changes by hand, editing the XML directly, then opening the
resulting packing in Office to see how it renders.

Theoretically it could be used in a production workflow of some type where one
or more of the XML parts was formed with a templating system, but I haven’t
tried that.

The command:

$ opc repackage example_dir example.xlsx

will reassemble the package item files found in example_dir into a package
at example.xlsx.

Use Case 6: substitute a part from one package into another

Which brings us to the final subcommand, substitute.

Perhaps the most vexing challenge one encounters as an OpenXML developer is the
dreaded “requires repair” error. This is when you create an Office document
that can’t be loaded by Office. Typically, you are presented with an error
like:

PowerPoint found a problem with content in the file example.pptx.
PowerPoint can attempt to repair the file

Often, the Office application can fix the file if you press the “Repair”
button, but it tells you nothing about what the problem was. If everything
worked fine before your last code change, you might have a good idea where to
look. Sometimes however, you have little in the way of clues and you are
visited by the unsettling realization that it could essentially be anything.

This is where substitute is a big help. It allows you to individually
substitute suspect parts from a broken file into a working one. (Using the
repair capability of the Office applications can often provide you with
a working version of the file to complement the broken one you’ve built.) If
the new file works, you’ve ruled out the substituted part. If the new file is
broken, you can focus on the differences between the two versions of that
specific part using diff-item. In the needle in a haystack situation, this
helps narrow your focus to 5-10% of the haystack.

The command:

$ opc substitute core.xml broken.docx working.docx trial.docx

combines the /docProps/core.xml part from broken.docx with all the
parts except core.xml from working.docx, and saves the resulting
package as trial.docx.

There are a lot of parameters to this command, so it prints the following
confirmation to ensure you asked for what you actually intended:

substituted 'docProps/core.xml' from 'broken.docx' into 'working.docx' and saved the result as 'trial.docx'

Note that neither the source package (e.g. broken.docx) nor the target
package (working.docx in this example) are affected by this command. They
simply provide content for the result package (trial.docx).

 Copyright 2013, Steve Canny.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	opc-diag 1.0.0 documentation

Support

We’d love to hear from you if you like opc-diag, want a new feature, find
a bug, need help using it, or just have a word of encouragement. Here’s how:

Mailing List

If you’re having trouble installing or using opc-diag, the mailing list is your
best bet. There is a low-volume mailing list for opc-diag at
python-opc@googlegroups.com

Issues

If you’re confident what you’ve encountered is a bug, or if there’s a feature
you’d like to see added to opc-diag, open a new issue in the issue tracker
on github at python-openxml/opc-diag [https://github.com/python-openxml/opc-diag].

It’s a good idea to start the conversation around a new feature request on the
mailing list, it’s quick to add it to the issue tracker once we’ve clarified
the best approach and it becomes actionable.

 Copyright 2013, Steve Canny.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	opc-diag 1.0.0 documentation

History

1.0.0 (2014-01-14)

	Add pretty-printing of extracted XML on extract command

0.9.8 (2013-12-13)

	hotfix – fix UnicodeEncodeError on output containing non-ASCII chars

0.9.7 (2013-09-23)

	Initial release – supporting browse, diff, diff-item, extract, repackage,
and substitute subcommands.

 Copyright 2013, Steve Canny.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	opc-diag 1.0.0 documentation

Index

 Copyright 2013, Steve Canny.
 Created using Sphinx 1.2.

 _static/comment-close.png

_static/comment.png

_static/down.png

search.html

 Navigation

 		
 index

 		opc-diag 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Steve Canny.
 Created using Sphinx 1.2.

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/plus.png

_static/up.png

